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Physical understanding may be regarded as the recognition that the multiplicity
of observed phenomena may be resolved to a smaller number of basic observations.
These basic observations provide the fundamental postulates on which physics is
built, examples of which include Newton’s postulates of mechanics, accounting for
the motion of bodies, and Maxwell’s equations, summarizing the properties of
electromagnetism.  Being resistant to any obvious context for deeper scrutiny, these
underlying relations seem indivisible expressions of apparent fact.  And since they
perfectly complement the impressions and intuition man develops by experiencing
the world, it follows that acceptance of these postulates be natural and their
fundamental stature not be challenged.  Yet, in the case of thermodynamics, its basic
laws do not share this privilege of sanctity.  Circumstances are readily contrived, such
as those suggested by the kinetic theory of gases, that provoke suspicion as to the
fundamental nature of these laws.  This is because these circumstances, to which
the laws seem essential, appear manageable from within the framework of other
disciplines.  In the interest of making its underlying tenets most basic, the question
emerges as to whether the laws of thermodynamics serve an indispensable purpose,
contributing a regard for some unique aspect of the universe that is otherwise
unaccounted for.  Further complicating the issue, the laws of thermodynamics do not
reflect quantities that are readily imagined, but instead rely on foreign concepts for
which common experience provides no direct preparation, such as entropy.  From this
troubling condition, the question persists:  Is thermodynamics fundamental?

The intent of this paper is to address this question by purposing an abstract
prospective built from Shannon’s information theory that demonstrates how the
central feature of thermodynamics, entropy, can be interpreted as an evolving
character of a system otherwise escaping description.  Although the dynamics that
bring about this feature are consistent with the views provided by other disciplines
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(such as mechanics in the case of kinetic theory),  it is suggested here that the
long-term behavior exhibited by these systems is not completely described by these
considerations, prompting the need for an additional assertion.  This assertion is
precisely what thermodynamics, through entropy, provides.  By presenting an
intuitively satisfying impression of thermodynamics developed through information
theory, the hope is that the mystery and suspicion surrounding this subject will
diminish, making it more meaningful and deeply appreciated.  Thermodynamics
makes a unique contribution to the tapestry of the universe, and in this paper that
contribution is made clear.

1.  Summary of Traditional Thermodynamics
First it may be worthwhile to examine the concepts of thermodynamics upon

which this paper relies.  This is a quick summary of thermodynamics.

Heat is a thermodynamic quantity concocted to provide a means of dealing with
occurrences of temperature change.  It is motivated by the apparent transmission that
occurs between objects undergoing a mutually induced temperature change, and it is
known to flow of its own accord only from hot to cold regions.  Its influx, associated
with positive temperature change, is defined in the positive sense.  By considering
cyclical processes, such as that of the Carnot cycle, it is clear that work can be done at
the expense of this entity, suggesting that heat is in some way representative of
energy.  This conclusion may be reached by any cyclical process, approximated by a
succession of infinitesimally slender Carnot cycles1, and in addition any arbitrary
process may be thought of as a part of a cyclical one.  As a result, this conclusion may
be applied generally.  Heat is therefore a form of energy.

Internal energy is another contrivance serving a valuable purpose in
thermodynamics.  It accounts for the energy associated with the thermal agitation of a
system, taking forms corresponding to any available degrees of freedom.  An example
is the energy of motion of particles in the case of an ideal gas.  At this point it is useful
to draw a distinction between two forms of energy, which for these purposes are
designated as ‘organized’ and ‘disorganized.’  Organized energy is that which can be
completely changed into work in a wholly recoverable manner.  An example of this is
the upward motion of the center of mass of an object, which can raise the mass in the
presence of gravity at the expense of this motion.  This occurs in a way that at its apex
no trace of this energy remains anywhere in its original form, but the energy can be
recovered by allowing the mass to fall.  Disorganized energy, on the other hand,
cannot undergo a wholly recoverable conversion of this type.  An example of this
energy is in the randomly directed motion about the center of mass of an object, such

1This technique is used in Appendix A, where the definition of differential entropy change
is developed.  The technique is explained there in detail.
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as the above cited example of thermally induced motion of an ideal gas.  This is the
type to which internal energy is ascribed.  No known process can completely convert
this type of energy to work without leaving some other effect on the system, and it is
this fact that predicates the Second Law of thermodynamics.  But first things first.

The First Law of thermodynamics is a statement of the law of conservation of
energy applied to quantities pertinent to thermodynamic consideration.  It is given as

dU = dQ+ dW (1.1)

where dU is the differential change in internal energy,
dQ2 is the heat into the system, and
dW2 is the work done on the system.

Of primary importance, at least from a practical standpoint, is a way of
expressing how much of a system’s energy is available to do work.  Entropy is a
construct of thermodynamics entwined with this purpose.  More specifically, entropy
reflects the amount of energy unavailable in this regard.  From a basic principle of this
subject, established from a generalization of the Carnot cycle3, entropy change is
given by

dS / 
dQ
T 

(1.2)

where dS is the differential change in the entropy of a system,
dQ is the heat into the system, and
T is the system’s temperature.

2A note on notation, at this point, is prudent.  Heat is represented here in differential
notation as dQ and work is represented as dW, though neither quantity is actually the differential of
any function.  Although there is a theoretical maximum amount of heat which can be evolved from
a system and a theoretical maximum of work which can be performed (in each case being the
system’s total energy, a fact following from energy conservation), no definite function for heat or
work exists.  This is because these quantities are not unique to a system’s state but instead are the
consequences of the specific process through which the system is taken.  This is juxtaposed against
the differential of the state function for internal energy, dU, which is a perfect differential.  A system
in a given state has a definite internal energy, but the heat and work that contributed this energy
are ambiguous since their contributions are merged by addition.  This fact, rooted in the additive
relationship of these terms within the First Law of thermodynamics, is a lucky feature of the
universe, making engines (such as the cellular engines of life) possible.  In this paper the
differential notation scheme was chosen for conventional consistency and also to emphasize the
‘differential magnitude’ of the quantities.

3See Appendix A for thoughtfulness on entropy’s underpinning as a state variable.
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This leads to 

∆ S = I 
rev

dS = I 
rev

dQ
T 

= 
Q 
T 

(1.3)

for a sufficiently small, reversible process increment, over which the heat transferred
does not appreciably affect the temperature.  This allows the temperature, T, to be
treated as constant, thereby validating the implicit assumption of equilibrium.  An
important consequence of this definition is its resulting additive properties.  Since
entropy change is given by a summation (integral), total entropy change over separate
processes is then the algebraic sum over the individual entropy changes.

Repeated use is made of the fact that, since entropy is a variable of system
state, it is therefore independent of the particular history of the system to bring about
that state.  Entropy change between two states is therefore independent of the
particular process undertaken between them.  This allows the entropy change over
any arbitrary process to be determined by the change over a particular process that
proceeds between the same initial and final states.  The chosen process may be
selected for matters of convenience, such as a relative ease in evaluation.  This same
argument can be made for any state variable, bringing about an important artifice in
thermodynamics, the use of the quasi-static process.  This is a process carrying a
system between two states over which externally imposed changes are by design
made to be arbitrarily minute at any moment in time, thus maintaining the system
arbitrarily close to equilibrium.  This is an important feature since thermodynamics
makes extensive use of quantities such as temperature and volume, which rely on the
assumption of equilibrium.  The use of quasi-static processes lends the possibility of
mathematical evaluation in determining exact changes in state variables over
processes which themselves are nonnegotiable.

Of primary interest in this paper are the implications and interpretation of the
Second Law of thermodynamics.  As is the case with any physical law, this law is a
summary of experimental observation.  Specifically, it recounts the observation that
systems having undergone certain processes cannot, by any possible faculty, restore
themselves to their prior state without the influence of an external agent.  Such
processes are labeled irreversible, and in the course of a system’s natural
progression these are the ones preferred by the universe wherever possible.  They
are processes over which the entropy increases, a fact concisely stated as the
inequality of the Second Law of thermodynamics,

∆ S $ 0 . (1.4)

The equality stands for the remaining possibility of the reversible process, where the
system in its entirety can restore itself without external influence.  But the irreversible
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processes are of more pressing interest here.  Particularly illustrative examples of
these processes include heat transference toward thermal equilibrium, damping, the
expansion of a gas, and mixing action.  Being particularly illustrative examples,
special attention is devoted to each of these phenomena in the following sections.

2.  Irreversibility of Heat Transference toward Thermal Equilibrium
A most basic occurrence motivating the subject of thermodynamics is heat

transference toward thermal equilibrium, where a uniformity of temperature is
established across a system initially without such uniformity.  For a treatment of this
phenomenon, consider two objects of differing temperatures placed in thermal
contact with each other but otherwise isolated.  Say the H side has a uniform
temperature higher than the uniform temperature of the L side.  Experience dictates
that with time these objects approach a common, intermediate temperature, after
which the temperature remains steady.  This process is known to be irreversible, and
it will be shown to be consistent with the Second Law, requiring that a process
bringing this about be one of increasing total entropy.  As given above in eqn. 1.3,

∆ S = 
Q 
T 

for a sufficiently small increment of a process over which the temperature does not
appreciably change.  To satisfy the criterion of reversibility linked to this expression,
the process may be viewed instead as an approximating quasi-static process4.
Applying this to the situation being considered, we see that the entropy change of the
H side over a brief instant is

∆ S 
H 

= 
Q 

H 

T 
H 

, (2.1)

and for the L side it is concurrently

∆ S 
L 
= 

Q 
L 

T 
L 

. (2.2)

Having recognized that heat represents a form of energy, the law of conservation of
energy demands that

Q 
H 

+ Q 
L 
= 0 

4This process may be of the type encountered in Appendix A.
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or

Q 
H 

= − Q 
L 
. (2.3)

For convenience, a new variable representing the heat flow in a positive sense is
introduced as

Q = Q 
L 
, (2.4)

chosen in this way since positive quantities of heat correspond to heat influx and heat
naturally flows from the hotter H side into the colder L side.  From this

∆ S 
H 

= 
− Q 
T 

H 

(2.5)

and

∆ S 
L 
= 

Q 
T 

L . (2.6)

Entropy is an algebraically additive quantity, so the total entropy change is the sum of
these terms,

∆ S = ∆ S 
H 

+ ∆ S 
L 
= 

− Q 
T 

H 

+ 
Q 
T 

L 

which after factoring and a slight rearrangement yields

∆ S = Q 
1 
T 

L 

− 
1 
T 

H 

. (2.7)

The situation is prescribed such that

T 
H 

> T 
L 
, (2.8)

from which it follows that

1 
T 

L 

− 
1 
T 

H 

> 0 . (2.9)

Also noting that Q by definition represents a positive quantity, then eqn. 2.7 implies
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∆ S > 0 . (2.10)

In the other possible case where the temperatures are initially equal, then eqn. 2.9
becomes

1 
T 

− 
1 
T 

= 0 , (2.11)

and the possibility

∆ S = 0 (2.12)

emerges.  This exhausts the range of possibilities for initial conditions, having
considering both matching and mismatching temperatures, and therefore leads to the
broad conclusion

∆ S $ 0 ,

which is the Second Law of thermodynamics.

3.  Irreversibility of Damping
To investigate damping phenomena, it is useful to reiterate the distinction

between two forms of energy mentioned earlier.  Organized energy is that which by
some mechanism can be interchanged completely with work, such as in lifting a
weight, while disorganized energy is that which cannot undergo such a complete
conversion, such as internal energy.

Systems are known to progress in such a way that their energy of the organized
kind dissipates with time, suggesting the conversion of organized to disorganized
energy.  In no case is it observed that disorganized energy, without other change,
contributes to the development of organized energy, inhibiting the suggestion of the
converse.  By conservation of energy, the loss of organized energy in a closed system
must contribute positively to internal energy of the system so as to keep the total
energy constant.  So this must occur in a form similar to the influx of energy in the
case of heat transference toward thermal equilibrium.  The implied transfer is
accordingly one with a positive quantity of heat.  Applying the formula for entropy
change, given by eqn. 1.3 as

∆ S = 
Q 
T 
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with

Q $ 0 , (3.1)

where the inequality denotes energy transfer as described above and the equality
denotes no energy transfer.  Also with

T > 0 , (3.2)

as is always the case with temperature, then we retrieve the Second Law once again,

∆ S $ 0 .

4.  Irreversibility of Gaseous Expansion

Figure 1:  Partitioned container confining an
ideal gas

To treat gaseous expansion,
consider a partitioned container with ideal
gas confined only to one side, as shown in
Figure 1.  This side of the vessel has
volume V1.  After removal of the partition,
experience dictates that the gas will expand
to fill the entire volume of the container, V1 +
V2.  To determine the associated entropy
change, the expansion process is chosen
to be an isothermal one, attractive for its
simplicity in examination.  The entropy
change over this chosen process is applicable to any, since, as pointed out earlier,
entropy is a function of the system’s state alone and not of the history of the system in
attaining that state.  The definition for entropy change, given by eqn. 1.2, provides a
good starting point

dS / 
dQ
T 

or rewritten

dQ= T dS. (4.1)

In the case of an ideal gas 

dW = − P dV, (4.2)

and also in the case of the gas undergoing an isothermal process where
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dT = 0 , (4.3)

then

dU = 
3 
2 

nR dT =   0 . (4.4)

Inserting these into the First Law of thermodynamics, given by eqn. 1.1 as

dU = dQ+ dW,

we find

0 = T dS − P dV

or following some algebraic manipulation

dS = 
P 
T 

dV. (4.5)

Next, to perform this integration, a substitution is made to express the right side of this
equation as a function only of V using the ideal gas law,

PV = nRT (4.6)

or

P 
T 

= 
nR
V 

, (4.7)

obtaining

dS = 
nR
V 

dV. (4.8)

Integrating from the initial to the final state gives

f 

I 
i 

dS = 
f 

I 
i 

nR
V 

dV (4.9)

∆ S = nR ln V 
1 
+ V 

2 
− ln V 

1 
. (4.10)
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Since volume is never a negative quantity, the magnitude operators are neglected.

∆ S = nR ln V 
1 
+ V 

2 
− ln V 

1 

∆ S = nR ln
V 

1 
+ V 

2 

V 
1 

. (4.11)

Again making use of this restriction on sensible volume measurements, quantities for
V2 are limited to the range

V 
2 
$ 0 (4.12)

so

V 
1 
+ V 

2 
$ V 

1 

V 
1 
+ V 

2 

V 
1 

$ 1 (4.13)

and

ln
V 

1 
+ V 

2 

V 
1 

$ 0 . (4.14)

With n and R necessarily non-negative, then

nR ln
V 

1 
+ V 

2 

V 
1 

$ 0 . (4.15)

Comparing this to eqn. 4.11, the Second Law of thermodynamics has been
manufactured yet again,

∆ S $ 0 .
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5.  Irreversibility of Mixing Action

Figure 2: Partitioned container with two types
of ideal gas

Consider this time a container with a
barrier initially separating ideal gas of two
distinct types.5  This situation is depicted in
Figure 2.  Each type of gas has some
distinguishing feature irrelevant to the
mixing process.  For this discussion, take
that feature to be color, with the partition
separating black and gray particles.  The
color of the particles has no bearing on
their diffusion.6  Additionally, the
temperatures and pressures initially
present in each of the sections are set to match.

Entropy is additive in a way that the mixing process may be accomplished by
the accumulation of simpler steps. Drawing from the preceding treatment of
isothermal expansion of an ideal gas, the steps are chosen to be separate
isothermal expansions of each of the initial collections of gases.  That is, the particles
starting in V1 expand into V1 + V2, just as those starting in V2 expand into V1 + V2.
From eqn. 4.11

∆ S 
1 
= n 

1 
R ln

V 
1 
+ V 

2 

V 
1 

(5.1)

and

∆ S 
2 
= n 

2 
R ln

V 
1 
+ V 

2 

V 
2 

, (5.2)

both of which are positive if not zero, as was concluded from the above treatment of
expansion.  The total entropy change is given by the sum of the entropy changes of
these steps,

5’Mixing’ of gas of the same type is not covered here in detail, but in that case the entropy
change is not of the same order as that involving different types.  The obvious reason for the
discrepancy is that the interchange of positions resulting from this kind of ‘false mixing’ produces
little distinguishable effect.  To some degree, however, the entropy is subject to increase because
the number of particles contained within each volume of the initial compartments is no longer
definite.  This argument is essentially the topic of Gibbs’ paradox.

6With removal of the partition in the dark, the mixing process is still expected to occur,
showing that the mixing will take place even under conditions where the mixing process is
necessarily oblivious to this feature.
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∆ S = ∆ S 
1 
+ ∆ S 

2 

∆ S = n 
1 
R ln

V 
1 
+ V 

2 

V 
1 

+ n 
2 
R ln

V 
1 
+ V 

2 

V 
2 

∆ S = R n 
1 
 ln

V 
1 
+ V 

2 

V 
1 

+ n 
2 
 ln

V 
1 
+ V 

2 

V 
2 

. (5.3)

This represents the summation of two non-negative terms, as established above, and
is therefore itself non-negative, so

∆ S $ 0 ,

showing yet another emergence of the Second Law.

6.  Summary of Information Theory
In the midst of the explosive technological growth following the Second World

War, Claude Shannon published his paper A Mathematical Theory of
Communication7, which provides the basis for the subject now known as information
theory.  This theory was motivated by engineering considerations spawned in the
development of communications systems, but Shannon was keenly aware of the
connection his work shared with thermodynamics.  His theory is completely
self-contained, formulated from its own abstract axioms, but it may be applied to
science with complete consistency. From the theory, an alternative expression for
entropy is developed, which is shown to be in agreement with that developed from a
basis of thermodynamics.

The primary issue Shannon wished to address was that of communication, i.e.
that which is necessary to reproduce the state of a local system on a remote one.  Of
all possible states available to the remote system, the state that it is to adopt is
indicated in some way by the information presented to it from the local system.  As a
fundamental principle of information theory, this idea of information was quantified in
such a way as to satisfy a basic defining characteristic:  information is to increase as
the number of possibilities from which a selection is made increases.  This
complements the intuition that more information be necessary to uniquely identify a
state from among a larger number of possible states.  The choice for mathematical
expression for this quantity is

7The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October, 1948.
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I = K log W (6.1)

where K is a constant, and
W is the number of equally likely possibilities from which one is identified by

the information.
By the change of base formula, the base of this logarithm and the constant act in
conjunction to describe the units of information.  We may therefore say

I = K N  ln W . (6.2)

Further, we may introduce Boltzmann’s constant in place of K' , scaling the measure
of information so that it is represented in units familiar to thermodynamics8

I 
thermo

= k ln W . (6.3)

More may be said to lend credence to this particular choice for the
mathematical expression of information.  Although any monotonically increasing
function of W would suffice to represent information according to its defining
characteristic, the logarithm function is the most convenient choice.  This is because
the properties of the logarithm correspond most closely to the intuitive notion for
information.  (e.g. Two identical storage media should have twice the capacity for
information than one, even though the total number of possible states is squared.)  It
is for reasons of convenience such as this that information is expressed in this way.

More generally, the quantity of information may be attributed to a set of states
which do not share the same likelihood of occurrence.  For this, the expression for the
information associated with a particular state may be given with statistical reference
as

I = − K log( p ) (6.4)

where the argument of the logarithm, p, is the probability of the state’s occurrence.
This complements the intuition that more information be associated with the

8Boltzmann’s constant is typically presented in units of energy over units of temperature,
implying that information carries this same measure.  This conclusion is misleading, however, and
does not facilitate a proper regard for the role of information.  Temperature is actually a measure of
a form of energy, thermal energy, and can be expressed in such units.  Therefore, by cancellation,
information may also appear dimensionless.  Clearly, this type of argument does not establish
unequivocal units for information.  Information is typically expressed in bits, units representing the
most basic form of distinction.  Each bit specifies one from among two possibilities with equal
probability of occurrence.
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specification of a state of lesser likelihood, an extension of the previously asserted
presumption that more information be required to identify a particular state from
among a larger number of possibilities.

In the case of equally likely states, this form produces the one established above.
The probability of selection of each from among W of these states is

p = 1 / W (6.5)

which, by substitution into eqn. 6.4, gives

I = − K log( 1 / W ) 

I = K log( W ) , (6.6)

in accordance with eqn. 6.1.

The average of this quantity of information over the range of possible selections
is also of interest.  In fact, it is this which Shannon refers to as entropy.9  Denoted by
the letter H, it is given per symbol by

H = 3 
i 

p 
i 
I 

i 
(6.7)

H = − K 3 
i 

p 
i 
log p 

i 
(6.8)

or for consistency with the customary system of units in thermodynamics

S = − k 3 
i 

p 
i 
ln p 

i 
. (6.9)

7.  The Connection with Information
For an example of the physical connection to information theory, let’s resume

consideration of the example previously given for entropy of mixing.  In the equilibrium
state, the system is at a uniform temperature with total volume

9Further justification for this expression of entropy is the content of Appendix B.  The
argument there follows closely to and is clearly inspired by one appearing in Leon Brillouin’s
Science and Information Theory.  (Brillouin, Leon, Science and Information Theory, Second Edition.
New York:  Academic Press Inc., 1962.)
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V = V 
1 
+ V 

2 
(7.1)

and total population

n = n 
black

+ n 
gray

. (7.2)

From eqn. 5.3, the entropy change of the mixing process is

∆ S = R n 
black

ln
V 

1 
+ V 

2 

V 
1 

+ n 
gray

ln
V 

1 
+ V 

2 

V 
2 

∆ S = R n 
black

ln
V 
V 

1 

+ n 
gray

ln
V 
V 

2 

. (7.3)

Introducing a one in the form

n / n = 1 (7.4)

and then distributing the denominator yields

∆ S = nR
n 

black

n 
ln

V 
V 

1 

+ 
n 

gray

n 
ln

V 
V 

2 

. (7.5)

Now introducing the ideal gas law in the form

V = 
nRT

P 
(7.6)

we obtain

∆ S = nR
n 

black

n 
ln

nRT / P 
n 

black
RT / P 

+ 
n 

gray

n 
ln

nRT / P 
n 

gray
RT / P 

∆ S = nR
n 

black

n 
ln

n 
n 

black

+ 
n 

gray

n 
ln

n 
n 

gray

∆ S = − nR
n 

black

n 
ln

n 
black

n 
+ 

n 
gray

n 
ln

n 
gray

n 
. (7.7)

From the definition of probability as the ratio of the tally of a particular outcome to the
total number of possible outcomes, with the particular outcome here being the
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differentiation between the black and gray particles, then

p 
black

= n 
black

/ n (7.8)

and

p 
gray

= n 
gray

/ n . (7.9)

Into eqn. 7.7, we get

∆ S = − nR p 
black

ln p 
black

+ p 
gray

ln p 
gray

∆ S = − Nk p 
black

ln p 
black

+ p 
gray

ln p 
gray

, (7.10)

which corresponds exactly to a case of Shannon’s formula for the entropy of a
message, as given in eqn. 6.9, for all N particles.  In this case the message is
comprised of N symbols, each of which represents one of the two particle types, black
and gray. Shannon’s entropy is intended to describe the information content of a
message, so the emergence of his formula suggests that a change in information be
associated with the mixing process.  This change may be regarded as the information
lost as the original arrangement of particles is scrambled.  And since it is this change
in information that is equated to entropy change, entropy, therefore, appears in some
way to be representative of the information specifying the arrangement of the system.

To further the connection between entropy and information, we return to the
example of expansion of an ideal gas treated earlier.  Expansion is a process over
which the localization of the constituent particles is lost as they become uniformly
distributed over a larger volume.  Recall the vessel considered in this example is
initially partitioned to create separate internal compartments with volumes V1 and V2,
and prior to the expansion, the gas is confined to the compartment of volume V1.  The
corresponding entropy change over the process is given by eqn. 4.11 to be

∆ S = nR ln
V 

1 
+ V 

2 

V 
1 .

In approaching this change from the perspective provided by information theory,
we begin by deducing the probability of a gas particle to be in V1 prior to expansion.
The gas particle is localized to region V1, so the probability of finding it there is
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p 
A 

= 
V 

1 

V 
1 

= 1 (7.11)

with associated information about the system state of

I 
A 

= − k ln p 
A 

= − k ln 1 = 0 . (7.12)

Following the expansion, the system has reached equilibrium, suggesting a uniform
density over the entire available volume V1 + V2.  At this point, the probability of the
particle’s occurring in V1 is

p 
B 

= 
V 

1 

V 
1 
+ V 

2 

, (7.13)

with information in this case of

I 
B 

= − k ln p 
B 

= − k ln
V 

1 

V 
1 
+ V 

2 

= k ln
V 

1 
+ V 

2 

V 
1 

. (7.14)

In order to restore the system after such an expansion, information is needed in
recognizing the localization of the particles.  To know a particle is within the original
boundary, the amount of information per particle is

I 
restore

= I 
B 

− I 
A 

= k ln
V 

1 
+ V 

2 

V 
1 

− 0 = k ln
V 

1 
+ V 

2 

V 
1 

, (7.15)

and for N particles

I 
RESTORE

= N I
restore

= N k ln
V 

1 
+ V 

2 

V 
1 

= nR ln
V 

1 
+ V 

2 

V 
1 

. (7.16)
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This is exactly the change in entropy.  From this and the result from mixing10, an
interpretation for entropy’s role may be advanced.

Entropy is typically referred to as being a measure of disorder.  This is not a
description conducive to precise interpretation, but from the preceding examples the
rational for this association becomes clear.  An ordered condition is one about which
information describing the particular arrangement of a system is held.  Each of these
examples begins with an ordered condition which over time evolves into one of lesser
order.  In the case of mixing, this information corresponds to the initial, ordered
arrangement of the particles, sorted by color.  In the case of expansion, this
corresponds to the circumstance of the particles being contained within a certain
volume, smaller than the obvious constraint of the vessel boundaries.  In each of
these examples, the entropy change reflects the information required to restore the
systems to their initial, more ordered conditions following a process over which they
have become disordered.  So entropy change, then, may be viewed as representative
of the information lost over the system’s progression into a more disordered state.
Therefore, it can be construed that entropy itself is a measure of the lack of
information specifying a system’s particular state.  That is, entropy measures the
uncertainty that exists about the specific, detailed structure of a system.  In the typical
considerations of thermodynamics, this may refer to the microscopic state of the
system as understood from quantum theory.  When applied more generally, however,
this may also include larger scale detail, such as the identity of a particular playing
card.

8.  Bolstering Boltzmann
In the previous section, the practices of information theory are applied to

selected physical phenomena to establish the connection between information and
entropy.  In this section we investigate the connection in a more general sense.

Imagine a system free to attain a state about which the observer has no
foreknowledge.  To that observer, each possible state has an equal probability of

10In each of these examples, the entropy change resulting from classical consideration has
been shown to match a result derived from information theory.  However, the aspects of information
theory drawn upon in each case may seem different.  In the case of mixing, the entropy change of
thermodynamics is equated to Shannon’s entropy of a message.  In the case of expansion, the
entropy change of thermodynamics is equated to the expression for information itself.  The reason
for this difference is that the nature of the information in each case is different.  Mixing is a special
case, where the numbers of particles of each type are fixed and the information is only associated
with their arrangement.  From the perspective of information theory, this means that the statistics of
the message are fixed.  With expansion, however, the statistics change.  That is, the likelihood of a
particle’s being in each region changes as the populations of the regions change.  As a result, the
expression for information reverts to the more primitive one.
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occurrence.  Thus,

p 
i 
= p (8.1)

and the entropy is

S = − k 3 
i 

p ln p 

S = − k  ln p 3 
i 

p . (8.2)

Since, by the nature of a summation over a complete set of probabilities,

3 
i 

p = 1 (8.3)

then the simplification can be achieved

S = − k ln p . (8.4)

With W states available, the probability of occurrence of any single state is

p = 1 / W (8.5)

and therefore by substitution

S = − k ln 1 / W 

or

S = k ln W , (8.6)

precisely the statistical formulation of entropy attributed to Boltzmann.

9.  Subjectivity of Information and Entropy
One of the basic principles that underlies the philosophy of science is the belief

of consistency in observations, irrespective of the personal condition of the observer.
Quantities such as pressure, volume and temperature satisfy this principle in that they
are determined through tests for which the experimenter's condition is irrelevant.
Entropy, however, does not satisfy this principle.  For evidence of this, consider an
example of two people playing a card game, a newcomer and a card counter.  The
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card counter, who has been paying close attention to the deck for some time, has
developed a keen awareness of the order of the cards.  The newcomer, who may
exhibit equal proficiency at counting the cards, has no initial awareness of the deck's
order.  While the card counter can offer specific statements about the state of the
deck, the newcomer can at best only offer probabilistic statements.

This inconsistency manifests itself in the entropy of the deck.  Its entropy,
according to Boltzmann, is

S = k ln W . (9.1)

From the perspective of the newcomer, who possesses no familiarity with the
state of the deck, the multiplicity, W, is

W = 52! . (9.2)

This is arrived at from the fact that a card in a particular position in the deck may be
any from among the 52 available possibilities, another card in a different position may
be from among the remaining 51, etc.

The card counter, however, with his specific knowledge of the deck accepts
less freedom for the possible order of the cards.  With n cards whose positions are
known to the card counter, the multiplicity is

W = ( 52 − n ) ! (9.3)

where, by definition of the informed card counter, n is greater than zero.  Clearly these
differing results for multiplicity yield different results for entropy.

This conclusion is consistent, however, with the interpretation lent to entropy as
a measure of the uncertainty about a system’s detail.  Having more information, the
uncertainty of the card counter should be different from (less than) that of someone
with no information about the state of the deck.  The characteristics of the system as it
exists independently, though, must not be a function of the observers.  Information
and entropy jointly play a complementary role to assure this by maintaining a
constancy in a system’s degree of detail (that is, how much about the system can be
specified).  This is a characteristic only of the system itself.  To explore this in greater
depth, let us further investigate the information and entropy associated with the deck
of cards.

Generally, eqn. 9.3 stands for the multiplicity of the deck for the n cards known
to the observer, regardless of what n is.  The entropy for the observer is
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S = k ln ( 52 − n ) ! . (9.4)

The corresponding information held by that observer is

I = k ln
52! 

( 52 − n ) ! 

I = k ln 52! − k ln ( 52 − n ) ! , (9.5)

arrived at by recognizing that positions with unknown cards do not impose distinct
possible arrangements of the deck, and therefore do not contribute to the number of
possibilities from which the information makes a distinction.

The degree of detail is then the sum of the known information, I, and the lack of
information, S.

I + S = k ln 52! − k ln ( 52 − n ) ! + k ln ( 52 − n ) ! 

I + S = k ln 52! (9.6)

which, as required, is independent of the characteristic of the observer, n.

By their nature, information and entropy account for the state of the observer.
But although they individually play subjective roles, their confluence is irrespective of
the condition of the observer, leading to the invariant truth demanded by underlying
scientific principle.  Information is obtained at the expense of entropy, and conversely
entropy is obtained at the expense of information, further corroborating their
underlying connection.  But together their combined description of the system is
independent of the observer.  To put this in other words, information reflects the
amount of detail known about a system, entropy reflects the amount of detail
unknown, and their total reflects the total amount of detail that exists about the system.

10.  The Meaning of Information
It has so far been established that information serves to specify the state

occupied by a system in more detail.  It has also been established that entropy serves
to measure the uncertainty in the specific detail of a system.  But the idea of knowing
about a system may seem personified.  It is worth addressing what is actually meant
by having information about a system.

To borrow a phrase from Shannon7, information is defined in mathematical
form to quantify that which is necessary to "...[reproduce] at one point either exactly or
approximately a message selected at another point."  The information associated with
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a message conveys the selection of a particular state at the receiver as dictated by the
transmitter.  Working from this interpretation, this means that the existence of
information between two independent systems implies a correlation in their states.
The state of one system is in some way a function of the state of the other.  This fact
provides a good context for recognizing the purpose that information serves.  It reflects
this recognized correspondence between the states of independent systems.  In other
words, information results from a known relationship that exists between the states,
allowing the state of one system to provide an indication as to the state of the other.
An example of this is a pair of computers coupled by a network between which a
message is sent.  Upon receipt of the message, the contents of one computer's
memory are made to reflect the contents of the other computer's memory.  Such an
occurrence is precisely what information theory is intended to depict.  Another
example returns to the card counter.  His actions in the game are made in response
to the order of the deck, suggesting that internally he is tracking the order of the cards
and therefore has some mental representation of the deck.  In his case, the
information indicates the correspondence between the deck's order and the internal
representation of this order within the card counter's mind. 

Information is established through communication.  In fact, historically it was
the study of communication that provided the impetus for information theory's
development.  Just as information has a physical interpretation of being a correlation
between states, communication, too, may be interpreted physically.  Information is
established by a coupling between the two systems so that the state of the observing
system is made to be a function of the system being observed.  It is this coupling that
is meant by communication.  In the example of the communication between
computers, the coupling mechanism is the network hardware whose task it is to
create a correspondence between the memories of the independent computer
systems.  In the case of the card counter, the coupling mechanism is the card
counter's senses, as he watches the cards.  By doing this, he learns their positions to
establish his mental representation of the deck.

To summarize, a correlation between systems is made by communication,
which is a coupling between the systems, so that their states are not free to be
arbitrary with respect to one another.  This results in the creation of information, which
reflects the constraint on the freedom of one system in attaining a state relative to the
other.  With information, the state of one of the systems in some way indicates
something about the other’s state.  This is the physical interpretation of information.

11.  Self-Depletion
In earlier sections, examples are highlighted of various types of systems

exhibiting some initial imbalance which, over time, approach a condition of greater
uniformity, i.e. a state of equilibrium.  To explore a possible general explanation for
this behavior, consider a system with some conserved characteristic labeled A.  After
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a balanced division of the system into two regions, called 1 and 2, presume this
quantity A is additive such that its value summed over the two regions, A1 + A2, equals
the measure over the entire system, A.  Examples of such quantities include mass,
energy and population.

If the barrier to A separating the two regions is removed (or more generally any
coupling mechanism is established between them), then, assuming that elemental
units of A are agitated such that they are free to migrate between the regions, those
elements in 1 diffuse by mixing into 2 and those in 2 similarly diffuse into 1.

Consider the details of this migration.  Over some period, ∆t, an elemental unit
of A has some probability of crossing into the other region.  The total amount crossing
over this period is proportional to this probability, κ, but also proportional to the
amount present on the original side.  The amount transferred from V1 into V2 is

∆ A 
1 
= − A 

1 
κ   ∆ t (11.1)

and from V2 into V1

∆ A 
2 
= − A 

2 
κ   ∆ t . (11.2)

The difference existing between the two regions, with A1 taken to be the more
populous quantity, is

D = A 
1 
− A 

2 
, (11.3)

and the change over that period of time is

∆ D = ∆ A 
1 
− ∆ A 

2 

∆ D = − A 
1 
κ   ∆ t + A 

2 
κ   ∆ t 

∆ D = A 
2 
− A 

1 
κ   ∆ t 

∆ D = − D   κ   ∆ t . (11.4)

In the limit of an infinitesimal slice of time

d D = − D κ   d t . (11.5)
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Integrating reveals

I 
1 
D 

dD= I − κ  dt

ln D + C = − κ  t. (11.6)

An equation of exponentials is formed from this equation, giving

e ln D + C = e − κ t . (11.7)

At this point, two potentially perplexing steps must take place.  First, the absolute
value operation is discarded since D is non-negative by its definition given in eqn.
11.3.  Second, since C represents only an arbitrary constant, the result of an operation
on it that yields a constant, such as eC, is still represented as C.  These steps reveal

D C = e − κ t . (11.8)

Dividing to move the arbitrary constant to the other side, and for the last step,
assigning it an appropriate meaning, the initial difference, (which suggests a non-
zero value, in compliance with the division) gives

D = D 
0 
e − κ t . (11.9)

Therefore, with a system which can be divided into two regions over which a
difference exists, and with the possibility of a symmetric exchange between these
regions, the difference follows an exponential decay and therefore diminishes with
time.  This is exactly consistent with the evolution observed in the cited phenomena
from preceding examples.

We take from this that a system exhibiting any form of imbalance tends to
reduce its imbalance with time as a result of the ‘overpopulated’ side depleting itself
faster than the ‘underpopulated’ side.  This conclusion is based on the assumption
that symmetric free exchange within the system is permitted, meaning that the
exchange process favors no particular direction.  This assertion is typically satisfied 
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by the symmetry in the governing dynamics of the processes considered.11

Equilibrium emerges as the circumstance when populations and, as a consequence,
the flow between them become equalized.

Specifically applied to those examples to which special attention has been
devoted, those elemental units exchanged between the regions are identified in the
cases of heat transference and damping as units of energy.  In the case of expansion,
the measure is taken to be the population of particles, and finally in the case of
mixing, the measure is taken as duel populations of particles of particular types.
Thus, a general mechanism has been cited to explain the natural processes
undertaken by these systems.

12.  The Second Law of Thermodynamics as a Consequence
In his paper, Shannon noted that any reduction in the disparity among a

message’s statistics results in an increase in entropy for that message.  In his own
words7, “Any change toward equalization of the probabilities p1, p2, . . .,pn increases
[entropy]. Thus if p1 < p2 and we increase p1, decreasing p2 an equal amount so that p1

and p2 are more nearly equal, then [entropy] increases.”  Making an observation of a
system is in no way incongruous with receiving a message (in fact receiving a
message may be thought of as making an observation of the transmitter).  Therefore
Shannon’s insight may be applied here.  As the probabilities of identifying distinct
features of a system become increasingly proximate in value, the entropy attached to
that system should consequently increase.  The previously asserted self-depletion
mechanism promotes just such a convergence of probabilities.  The result is an
increase in entropy that is reminiscent of the Second Law of thermodynamics.  It is
this line of reasoning that is the focus of this section.  By again pursuing the
fundamental example of expansion, we establish this result by demonstrating that the
time derivative of the entropy function be necessarily positive if non-zero, thereby
indicating that the entropy over a process, if changing, increases with time.

11This fact is considered in detail in another paper of mine.  Lacking a formal title, it has
been dubbed the paper on ‘impossible machines.’  The content of this paper is summarized well in
its first two lines:

In the course of trying to gain insight into the second law of thermodynamics, the
consideration of machines whose operation could be imagined to violate this law
has become a central focus.  These machines rely on the appearance of a
preferred direction in the coupling between thermal effects and an output of some
kind with the potential to do work.

This quandary is discussed, leading to the conclusion:
Any process, to the extent that it can be driven by its own thermal energy at
equilibrium, is symmetric with respect to direction of energy flow because of the
symmetry in coupling mechanisms, and therefore equilibrium is necessarily
maintained. Thus, the second law is satisfied. And with this revealing explanation, I
can be satisfied with the second law.
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In the case of expansion the noteworthy feature of the constituent particles of a
system is their position, whether they are found within their original confines or
beyond them.  From information theory, the entropy bound to an observation of each
particle of the system is given in eqn. 6.912 as

S = − k 3 
i 

p 
i 
ln p 

i 
, (12.1)

where in this case two exclusive possibilities exist.  Those possibilities are of being
found within or beyond the original confines.  With a total population of N, the
population within the original volume, V1, is denoted N1 with a probability of occurring
for a given particle, p1, and the population within the newly available volume, V2, is
denoted N2 with a probability of occurring, p2.  To determine the time derivative of the
entropy function, we start by finding its derivative with respect to the probability term p1,
and then, using the time derivative of the probability, we arrive at the sought after time
derivative of the entropy function by the Chain Rule of calculus.

To get the derivative of the entropy function with respect to p1, we must first
express entropy as a function of p1.  This endeavor is begun by expanding the entropy
summation for this case, revealing

S = − k p 
1 
ln p 

1 
+ p 

2 
ln p 

2 
. (12.2)

The events represented by p1 and p2 are individually exclusive but together all
inclusive.  Therefore the sum of these probabilities must be one.  From this

p 
2 
= 1 − p 

1 
. (12.3)

Making this replacement into eqn. 12.2 gives

S = − k p 
1 
ln p 

1 
+ 1 − p 

1 
ln 1 − p 

1 
. (12.4)

To facilitate finding the derivative of this with respect with p1, the multiplication of the

12In the earlier section where the connection between thermodynamics and information
theory is drawn, a footnote comments that the entropy change of expansion is not represented by
Shannon’s entropy.  Yet as the current section begins, Shannon’s formula is proposed to serve this
purpose.  The reason given earlier for the failure of the formula is the changing nature of the
statistics as the expansion occurs.  Driven by the theme of that section, to establish a physical
connection with information theory, these statistics are based on spatial details, implicitly relying
on a condition of uniform density.  The argument here presents an alternate set of statistics without
implicit reliance on uniformity, thereby removing the difficulty previously encountered.
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second term is carried out.

S = − k p 
1 
ln p 

1 
+ ln 1 − p 

1 
− p 

1 
ln 1 − p 

1 
(12.5)

The derivative is now found.

dS
dp

1 

= − k ln p 
1 

+ 
p 

1 

p 
1 

+ 
1 

1 − p 
1 

− 1 − 
p 

1 

1 − p 
1 

− 1 − ln 1 − p 
1 

dS
dp

1 

= − k ln p 
1 

+ 1 + 
1 

1 − p 
1 

p 
1 
− 1 − ln 1 − p 

1 

dS
dp

1 

= − k ln p 
1 

+ 1 − 1 − ln 1 − p 
1 

dS
dp

1 

= − k ln p 
1 

− ln 1 − p 
1 

(12.6)

Later, use will be made of this.  Next, however, the derivative of p1 with respect to time
must be found.  For this, p1 must be found as a function of time.  Drawing from the
proceeding description of self-depletion, the difference, D, in this case is identified as
the difference in populations of the two compartments.  Mathematically, it is
expressed as

D = N 
1 
− N 

2 
(12.7)

where N1 is understood to remain greater than N2 over the course of the expansion.
Now recalling that

N = N 
1 
+ N 

2 

or

N 
2 
= N − N 

1 
, (12.8)

the substitution is made into eqn. 12.7

D = N 
1 
− N − N 

1 
= 2 N 

1 
− N . (12.9)

The difference, D, was found in the proceeding section as eqn. 11.9 to be
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D = D 
0 
e − κ t 

so equating these, we arrive at

2 N 
1 
− N = D 

0 
e − κ t 

or

N 
1 
= 

N + D 
0 
e − κ t 

2 
. (12.10)

From this, p1 may be given as a function of time.

p 
1 
= 

N 
1 

N 
= 

N + D 
0 
e − κ t 

2 N 
= 

1 
2 

+ 
D 

0 
e − κ t 

2 N 
(12.11)

and its time derivative is

dp
1 

dt
= 

d 
dt

1 
2 

+ 
D 

0 
e − κ t 

2 N 
= − 

D 
0 
κ 

2 N 
e − κ t . (12.12)

By the Chain Rule, the time derivative for entropy may now be found

dS
dt

= 
dS
dp

1 

A 
dp

1 

dt
= − k ln p 

1 
− ln 1 − p 

1 
− 

D 
0 
κ 

2 N 
e − κ t (12.13)

and with appropriate substitutions for p1, this is expressed as a function of time

dS
dt

= 
dS
dp

1 

A 
dp

1 

dt

dS
dt

= − k ln
1 
2 

+ 
D 

0 
e − κ t 

2 N 
− ln 1 − 

1 
2 

+ 
D 

0 
e − κ t 

2 N 
− 

D 
0 
κ 

2 N 
e − κ t 

dS
dt

= − k ln
1 
2 

+ 
D 

0 
e − κ t 

2 N 
− ln

1 
2 

− 
D 

0 
e − κ t 

2 N 
− 

D 
0 
κ 

2 N 
e − κ t 
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dS
dt

= 
k D 

0 
κ 

2 N 
ln

1 
2 

+ 
D 

0 
e − κ t 

2 N 
− ln

1 
2 

− 
D 

0 
e − κ t 

2 N 
e − κ t . (12.14)

At this point we have a description of the change in entropy over time.  Over the course
of a natural process subject to the self-depletion mechanism previously established,
the entropy of the system evolves according to this rule.  It will now be demonstrated
that the rule demands that the time derivative of entropy be positive or zero, in
agreement with the Second Law of thermodynamics. 

The expression may be broken into three distinct parts to discuss the signs of

its factors.  The first is the constant coefficient, 
k D 

0 
κ 

2 N 
.  This coefficient is positive since

all of its factors are positive if non-zero.  Boltzmann’s constant, k, is known to be
positive.  The initial difference, D0, is positive as a result of its use as the difference of
the greater population minus the smaller one, or it is zero if no difference exists.  The
rate of exchange factor, κ, is positive following from the nature of its use in the eqns.
11.1 and 11.2 in the self-depletion section or zero if no coupling is allowed.  In the
denominator, the number two is positive, of course, and the total population, N, is a
positive number for a realistic situation of interest to exist.  Therefore, this coefficient is
a positive number, if non-zero.

The next part of the expression is taken to be the bracketed quantity,

ln
1 
2 

+ 
D 

0 
e − κ t 

2 N 
− ln

1 
2 

− 
D 

0 
e − κ t 

2 N 
.  This quantity is positive since it is a subtraction of a

monotonically increasing function, the natural logarithm, with the argument of the
positive term greater than that of the negative term.  In other words, by drawing from
the property of logarithms that the greater a number, the greater its logarithm, the
positive term has the greater logarithm argument, so the positive term itself is greater,
leading to a positive difference.  Therefore this portion of the expression is positive.

The last part of the expression is that which remains, e − κ t .  By the nature of this
function, it is always positive.  Therefore, the product of these three factors, the time
derivative of entropy, is positive if non-zero.  Thus entropy is increasing over natural
processes (or remaining constant in the case of zero), meaning the argument
presented here is consistent with the Second Law of thermodynamics,

∆ S $ 0 .

29



13.  The Impression of the Second Law of Thermodynamics
In the arcane language of a physicist, the Second Law of thermodynamics

states that the entropy of a closed system never decreases.  A crucial step is to
recognize what feature of the universe this law is meant to represent - that is, to
recognize the essence of the law.  Having granted a new prospective upon
thermodynamics provoked by the statistical considerations of information theory, this
becomes possible.

Information is a measure of how much coincidence there exists in the states of
independent systems.  Entropy is its counterpart, measuring the uncertainty of
coincidence between them.  Increasing entropy, as demanded by the Second Law,
therefore implies a loss of information as the recognition of coincidence between the
states is eroded.  From the conceptual framework provided by information theory, the
Second Law may be interpreted as stating that the amount of information held about a
closed system must decrease, if it changes.  In other words, we live in a forgetful
universe.  With the additional insight supplied by the meaning attributed to
information, this means that independent systems, such as the closed system and its
former observer13, diverge as the state of the closed system, the state of the observer
or both scramble.  As this divergence progresses, the observer’s information is
exchanged for entropy, thereby causing the entropy to increase.

This theoretical justification may complement intuition, but it is also worthwhile
to cultivate a more practical impression.  Four examples are given earlier in this paper
of natural processes that exhibit consistency with the Second Law, and they have
provided a good stage for scrutiny to advance the preceding arguments.  But they are
contrived, idealized examples whose artificially simplified nature belies the complexity
of real-world phenomena.  So, consider more everyday examples.

Metal ores, crude oil and sand are among the raw materials processed and
assembled to build many machines of the modern world.  A clear parallel emerges
between the construction of these machines and the organization of the initial state of
sorted particles in the mixing example.  For the materials fashioned into a machine,
information is known about their state.  Their organization is known to be within the
bounds of the device into which they are formed.  The car provides an example.  It
represents a narrow range of possible organizations from among those possible for
its constituent atoms.  Information is associated with this order.  Furthermore, the role
of the Second Law is in the car’s journey to eventual failure, as ‘wear and tear’
scrambles the particular assemblage of atoms, diminishing the information known of
the arrangement.  The car goes from being a pristine duplicate from among
seemingly identical new cars to a car about which less is known.  It may have

13The observer must cease his spying activity.  Otherwise the notion of a closed system is
violated.  This is because observation is a coupling between the states of the observer and the
observed, meaning that the systems lack the isolation required of being closed.
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developed a worn fan belt, a leaky radiator, a broken cam shaft, etc. as it diverges
from the new car state.  This is exactly the reason care is advised when purchasing a
used car.

Another example is the operation of an engine.  Every engine is required to
engage in some form of consumption in order to sustain its operation.  This fact
follows from the Second Law of thermodynamics.  According to this law, the operation
of the engine results in an entropy increase and therefore a loss of information.  As
has been established, information represents a recognized correspondence between
states.  The information in this case reflects the correspondence that exists between
the form of the fuel14 and the structure of the engine.  The structure of the engine
makes reference to the particular nature of the fuel in order to recognize how to take
advantage of it through consumption.  A person does not derive sustenance from
gasoline, nor does a car run on a sumptuous meal.  In the same way, a solar cell and
a windmill do not interchange.  Any process with a coupling mechanism customized
to take advantage of fuel in order to produce work serves as an engine.  The operation
of the engine, with its regard for the fuel's form, thereby consumes the fuel and
diminishes this form.  This takes place at the expense of information in exchange for
entropy, occurring in a familiar manner for its resemblance to self-depletion.  Earlier in
this paper, entropy is described as being entwined with an expression of the energy
unavailable for work.  It is in this way that the account is made.

For a less concrete type of information, consider language.  The grade-school
telephone game, where a message is orally passed along a string of children, is an
example.  As each child couples with his neighbor to pass the message, the
possibility of error accumulates and the uncertainty in the message increases.
Increasing uncertainty implies increasing entropy, so this occurs in accordance with
the Second Law.  Such an accumulation of errors in oral communication is apparent
as a natural driving mechanism in the evolution of language, for example, where
dialects and accents are the result of perversion of their root language.

In an address to Congress after strife with President Truman, General Douglas
MacArthur announced that, “...old soldiers never die; they just fade away.”  Though
intended, no doubt, as a tribute to himself, this statement is also a testament to the
Second Law of thermodynamics.

14.  The Statistical Role in Thermodynamics
A troubling difficulty with thermodynamics is its apparent reliance on statistical

results.  Systems evolve with increasing entropy, as experience shows they approach

14The use of the word fuel, here, is intended in a more general sense than its typical
function.  Fuel may account for a chemical agent to consume, but also a temperature or density
gradient, among other things.
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a state of greater uniformity.  This provides a strong temptation to accept a direct
relationship between entropy and the degree to which a system is uniform.  But the
possibility exists that a system may happen to engage in a series of events purely by
chance that have the effect of reducing uniformity.  If entropy increase implies an
approach to uniformity, it is troubling that, upon inspection of a system, a state of
greater uniformity is not necessary found.

In the typical example of gaseous expansion, entropy increase is shown to
coincide with the dispersion of gas particles, suggesting that entropy is in some way
a measure of the degree of this dispersion.  The expectation arises that a greater
entropy be associated with a system state of greater expansion, so from the Second
Law the observed property of expansion of a gas follows.  Yet it is easy to imagine
from the detailed mechanics of the particle model that, as a result of random
fluctuation, spontaneous compression may occur naturally.  Further, this
compression may occur naturally on a large scale, should the random particle motion
happen to arrange it.  This is in clear violation of the expectation that the Second Law
lead to the establishment of a uniform, equilibrium condition.  Somewhat mitigating
this unsettling possibility is the extreme improbability of such an event occurring to a
highly significant degree.  But the blemish on the credibility of thermodynamics
stands.  Entropy is a variable of system state, after all, and should therefore
unambiguously indicate the condition of the system.

Key to unraveling this contradiction is the recognition that, although entropy is a
state variable, it accounts for more than just the system in isolation.  Entropy reflects
the relationship between the system and its observer.  It is this fact that removes the
array of difficulties in conceptualizing thermodynamics in accordance with other
branches of physics that operate from a detailed view.  Although entropy increases
with gaseous expansion, that increase does not follow from the physical separation of
the particles.  Entropy is not tied to the particular arrangement of particles, but instead
in the uncertainty of precisely specifying that arrangement.  The commonplace view
that increased entropy suggests a condition of greater expansion, based on a blind
association, is the cause of the difficulty by asserting that an observation of a less
expanded condition is not possible, despite no such restriction from mechanics.  The
interpretation through information theory, however, presents a conceptual framework
from which this difficulty does not arise.  From this view, the entropy increase only
notes the increase in uncertainty as the system evolves, regardless of whether that
evolution be in a direction of increasing or decreasing uniformity.  The natural
favoritism toward uniformity is the result of that condition’s statistical advantage,
where expanded states account for an overwhelmingly large proportion of all
possibilities.  But a more uniform condition is not directly endorsed by entropy
increase.  Expansion's ubiquitous role in describing entropy increase is inspired only
by the fact that it represents an easily imagined case where an initial state of detail is
recognized.  But evolution from any particularly specified state is a case of increase in
entropy.
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One consequence of this outlook on entropy’s role that may arouse suspicion
is the decrease in entropy required of the system upon observation, as its state is
learned by the observer and the uncertainty of the system’s state accordingly
decreases.  This entropy decrease is not in contrast to the Second Law, however,
since the prohibition of such decrease applies only to closed systems, of which a
system under external observation is not.  The entropy decrease of the observed
system is offset by the entropy increase of the observer.  (e.g. A candle must burn for
one to read in a dark room).  It is this fact that robs Maxwell’s demon of his fantastic
feature.  And with this, suspicion is allayed.

Although the possibility of a natural spontaneous compression is unlikely,
nothing in the mechanical point of view absolutely precludes this possibility.  And it is
now established that nothing in the thermodynamic view does either.  Entropy is a
function of probabilistic parameters of a system, not physical ones, and entropy
change only recognizes probabilistic changes in identifying specific system states.
So, entropy does not make any comment to indicate the detailed state of a system.  To
the contrary, entropy’s purpose is to acknowledge the uncertainty in the occurrence of
any specific detailed state.

15.  Introduction of Temporal Asymmetry
The primary interest of this paper is to suggest an intuitively satisfying

interpretation of thermodynamics.  At this point, this in large part is accomplished,15

with the application of information theory bestowing conceptual clarity to the nebulous
notions of thermodynamics.  Paramount among these notions is the idea of entropy,
established to be a gauge of the uncertainty in precisely identifying the particular
detailed state of a system.  The Second Law of thermodynamics is then established
from this to be a statement implying that this uncertainty increases, if changing at all,
because of the scrambling action of natural mechanisms such as thermal fluctuation.
These mechanisms continually disorder the system, thereby effacing any
correspondence that may exist between the states of independent systems.  With this
theoretical framework in place, the final pursuit of the paper may be engaged:
demonstrating the uniqueness of thermodynamics.

An illuminating contradiction appears from again examining the view of the
kinetic theory of gases being contrast with thermodynamics.  This contradiction sets
the stage for demonstrating the unique role thermodynamics plays.  It comes about
from the familiar foundation which is typical for an argument in thermodynamics, the
box of ideal gas.  Again imagining this system as a collection of bouncing particles,
the system appears as though it may be described in its entirety by an approach

15Satisfaction is at the discretion of the reader.
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rooted in mechanics.  This leads to a new troubling difficulty, reconciling the time
asymmetry of thermodynamics with the time symmetry of mechanics.  But the
resolution to this quandary leads to an affirmation of the fundamental posture of
thermodynamics.

The postulates of mechanics take exactly the same form whether operating
forward or backward in time.  Therefore mechanics is time symmetric.  This is not the
case, however, with thermodynamics, which is sensitive to temporal direction.
Theoretically, a system governed by mechanics might be reversed, progressing
backward through its past succession of states without further external influence.
This is in clear contrast to the demands imposed on that system by thermodynamics.
To resolve this contradiction, we turn to the new understanding afforded us by
information theory and examine the suspicious underlying assumptions present in
the point of view of mechanics (and also pervasive among many other branches of
physics).

Mechanics tells us that a body’s position is a function of time.  Therefore, all
information regarding a particle’s position over time is completely contained in this
function.  This leads to the belief that, with information of this type in addition to the
information of the precise initial conditions, the long-term behavior of systems may be
tracked with infinite precision.  This exacting condition, however, is unattainable in
practice, because the measurements in ascertaining the initial conditions are always
made only to within a limited precision16.  Therefore the system is not completely
resolved.  Variability remains beyond the precision of the measurements.  Further,
with the procession of time, this variability builds on itself, accumulating a divergence
of increasing significance.  This occurs even in the presence of damping forces, since
these forces do not produce energetic losses to the system, but only change the
organized character of this energy.  The cumulative effect of this divergence is shown
through computer simulation in Figures 3a-c and 3d, where the paths of two particles
are traced.  These particles have identical initial conditions with the exception of a
slight deviation in their initial velocities.  The paths can be seen to overlap initially but
diverge with time.  In typical physics nomenclature, this divergence is described as
‘error,’ but the term seems misapplied since this effect is not the result of any
avoidable deficiency but instead is a natural consequence of the act of measuring.

16This statement is built from classical mechanics, with no regard for the implications of
quantum mechanics.  This represents no threat to the argument, however, since often in practice
measuring limitations occur on larger scales before quantum effects become significant, meaning
that the cause of this contradiction is not rooted by necessity in quantum mechanics.
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Figure 3a:  Computer simulation indicating the difference between the paths of two identical
particles with nearly identical initial conditions.  Each path, marking the edge of the shaded

region, is generated independently and represents the course taken by one free particle subject
to 1/r2 forces supplied by six other free particles (not shown).  The two paths differ in their

particles’ initial velocity by one one-thousandth.  The starting points are indicated by an ‘X.’

Figure 3b: The difference between two particle paths, again each representing the course of a
free particle subject to 1/r2 forces from six other free particles (not shown).  This time, though, the
two paths differ in their particles’ initial velocity by one one-millionth.  And again, ‘X’ marks the

spot from which their journeys began.  Note the span over which the paths are coincident is
longer with this smaller initial difference, but the paths show an eventual divergence.
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Figure 3c:  Once again, the difference between two particle paths starting at the ‘X.’  This time,
though, the two paths differ in their particles’ initial velocity by one one-billionth.  Note here the

span over which the paths coincide is even longer, although they still eventually separate.

Figure 3d:  A glimpse of
the situation depicted in
Figure 3a, this time with
the paths of the six other

particles shown.
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Entropy, according to the development purposed in this paper, increases with
increasing deviation between independent systems.  Such a deviation is exactly what
the preceding paragraph depicts as an unavoidable result of measuring limitations.
Therefore entropy increase is the natural result of these limitations, as the variance
they introduce accumulates as divergence between the systems.  So from this we
may conclude that entropy increase is compatible with, in addition to being
independent of, mechanics and other physical descriptions.  It serves to recognize the
inherent impossibility permitted by these descriptions, that measurements exist to an
infinite precision, thereby allowing for an unachievably complete description of a
system’s state.

Thermodynamics is frequently regarded as a mere statistical regurgitation of
the detailed characterizations of large scale systems.  This view is then accompanied
by the associated comments about intractable numbers of coupled governing
equations which, in theory, yield exact solutions.  But doubt is now cast on this point of
view.  Physics is built on measurements, and its most basic purpose is to allow for
successful predictions.  But because of the unavoidable imprecision of the act of
measuring, the uncertainty of predictions in specifying an outcome increases with
time, making specific predictions decreasingly likely to be successful.  This is what
thermodynamics serves to recognize.  And with this interpretation in place, the unique
role of thermodynamics is established.

* * * * * * *

All deeper arguments aside, truth is nothing more than a belief that provides personal
satisfaction.  The purpose of this paper is to present an interpretation of
thermodynamics which I currently find satisfying, making it truth enough for me.  But,
as is a convenient feature of science, this belief may be subject to revision or
replacement in the future, for the sake of a more satisfying one.  For now, though, this
will do.
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Appendix A

Expression for Entropy Change from Study of the Carnot Cycle
An obvious feature of any state variable is that its change between any two

states be equal, regardless of the process undertaken to bring about the change of
state.  For such a quantity, we look to the Carnot cycle.

Figure A.1:  The Carnot Cycle

The Carnot cycle is a reversible
cyclical process imposed on an ideal
gas.  It is comprised of four
subprocesses, as depicted in Figure
A.1.  The subprocesses extending from
state 1 to state 2 and below that from
state 3 to state 4 are isothermal.  The
constant temperature over these
subprocesses is maintained by an
exchange of heat with the surroundings.
The subprocesses from state 2 to state
3 and then from state 4 back to state 1
are adiabatic.  Over these, no heat is exchanged.

The amount of heat required in the procession of the isothermal subprocesses
may be found in exact form.  Since the system is comprised of an ideal gas whose
temperature is kept constant, the internal energy of the system is also constant.  This
stems from the fact that the internal energy of an ideal gas is known to be a function of
temperature by

U = 
3 
2 

nRT, (A.1)

so its change over temperature is

dU
dT

= 
3 
2 

nR (A.2)

and

dU = 
3 
2 

nR dT, (A.3)

and so with

dT = 0 (A.4)
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then

d U = 0 . (A.5)

The First Law of thermodynamics, given in eqn. 1.1 as

dU = dQ+ dW,

in this case simplifies to 

dQ= − dW. (A.6)

Work is done on the gas by compression, and the gas does work on its surroundings
by expansion.  Therefore,

dW = − P dV. (A.7)

Applying this to eqn. A.6 and integrating for the isotherm occurring at the higher
temperature gives

Q 
H 

= − − 
2 

I 
1 

P  dV . (A.8)

From the ideal gas law

PV = nRT

this produces

Q 
H 

= − − 
2 

I 
1 

nRT
H 

V 
dV = 

2 

I 
1 

nRT
H 

V 
dV= nRT

H 

2 

I 
1 

1 
V 

dV= nRT
H 
 ln

V 
2 

V 
1 

. (A.9)

Volume measurements are restricted to non-negative numbers, so this simplifies to

Q 
H 

= nRT
H 
 ln

V 
2 

V 
1 

. (A.10)

Similarly for the isotherm of lower temperature, we find
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Q 
C 

= − − 
4 

I 
3 

nRT
C 

V 
dV = 

4 

I 
3 

nRT
C 

V 
dV= nRT

C 

4 

I 
3 

1 
V 

dV= nRT
C 
 ln

V 
4 

V 
3 

Q 
C 

= nRT
C 
 ln

V 
4 

V 
3 

. (A.11)

Later use will be made of these equations for heat over the isothermal subprocesses.
But to relate them to each other, we must first find the relationship between the
logarithms of the volume ratios they contain.  This is done by focusing on the
adiabatic subprocesses, where we note that

dQ= 0 , (A.12)

and the First Law becomes

dU = dW. (A.13)

Again drawing on eqn. A.7, this may be expressed as

dU = − P dV, (A.14)

and replacing from the ideal gas law as before, this becomes

dU = − 
nRT
V 

dV. (A.15)

Again in the case of an ideal gas

dU = 
3 
2 

nR dT.

Combining these equations leads to

3 
2 

nR dT = − 
nRT
V 

dV

3 
2 

nR dT − 
1 

nRT
= 

1 
V 

dV

− 
3 
2 

1 
T 

dT = 
1 
V 

dV. (A.16)
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Integrating this from general states A to B yields

− 
3 
2 

A 

I 
B 

1 
T 

dT = 
A 

I 
B 

1 
V 

dV

− 
3 
2 

l n 
T 

B 

T 
A 

= l n 
V 

B 

V 
A 

− l n 
T 

B 

3 / 2 

T 
A 

3 / 2 
= l n 

V 
B 

V 
A 

l n 
T 

A 

3 / 2 

T 
B 

3 / 2 
= l n 

V 
B 

V 
A 

. (A.17)

With this, the relation between the quantities of heat required for the two isotherms
may be crafted.  This is begun by first recognizing the relationship that exists between
the logarithms of the volume ratios present in their equations, eqns. A.10 and A.11.
From eqn. A.17 applied to each adiabatic process

l n 
V 

2 

V 
3 

= l n 
T 

C 

3 / 2 

T 
H 

3 / 2 
(A.18)

from state 2 to state 3, and

l n 
V 

4 

V 
1 

= l n 
T 

H 

3 / 2 

T 
C 

3 / 2 

l n 
V 

1 

V 
4 

= l n 
T 

C 

3 / 2 

T 
H 

3 / 2 
(A.19)

from state 4 to state 1, and therefore

l n 
V 

2 

V 
3 

= l n 
V 

1 

V 
4 

. (A.20)

Raising both sides to the power V3/V1
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. (A.21)

Making a replacement into eqn. A.11 with this, we get

Q 
C 

= − nRT
C 
 ln

V 
2 

V 
1 

. (A.22)

Dividing eqn. A.10 by this equation gives

Q 
H 

Q 
C 

= 
nRTH  ln

V 2 

V 1 

− nRTC  ln
V 2 

V 1 

Q 
H 

Q 
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= − 
T 
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T 
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Q 
H 

T 
H 

= − 
Q 

C 

T 
C 

Q 
H 

T 
H 

+ 
Q 

C 

T 
C 

= 0 . (A.23)

This is an essential result for identifying a state variable.  The cumulative effect on
such a variable over a closed process (one which leads back to its starting state)
must result in no change.  This summation over the ratios of heat to temperature is a
promising candidate since it adds to zero over the Carnot cycle, thereby representing
a special case of this general property we expect of a state variable.  (It should be
noted that this conclusion presumes the variable be subject to the property of
algebraic additivity.  But, this presumption is verified by the fact that such additivity
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follows naturally from its development in evaluating a process synthesized through
adiabatic and isothermal subprocesses.)

Figure A.2:  An arbitrary process approximated by
adiabatic and isothermal subprocesses.

We now endeavor to
extend this result to an
arbitrary process.  As it
stands, the quantity’s
essential feature, summing
to zero, is only established
over a Carnot cycle.
Interestingly the adiabatic
portions of this cycle do not
contribute to this quantity.  It
accumulates exclusively from
the isotherms, over which the
temperature remains
constant.  This inspires a
scheme for general
application, a glimmer of
which appears in the
preceding paragraph.  An
arbitrary closed process may
be approximated by a
succession of adiabatic and
isothermal subprocesses as
depicted in Figure A.2.  The summation of the heat to temperature ratios over the
subprocesses, to which the adiabats do not contribute and over the isothermal
remainder of which the temperature is constant, maintains the desired feature

3 
closed,   rev

Q 
T 

= 0 . (A.24)

An exact solution is achieved as the approximation approaches the actual process by
its construction from infinitesimal subprocess segments.  This turns the summation
over the closed process into the integral

ä 
rev

dQ
T 

= 0 , (A.25)

where it is noted that Q transforms to dQ only to reflect the fact that the quantity
becomes infinitesimal in magnitude.  This quantity sums to zero around a closed path
in phase space for a reversible process.  Further, the summation occurs in a non-
trivial manner, not being zero over its entirety.  It also appears to return a non-zero
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result in the absence of a closed process, with only one exception.  Just as the state
variable of temperature sustains no change over only the isothermal process, the
state variable of pressure sustains no change over only the isobaric process and so
on, no change occurs to this quantity over only one type of process, the adiabatic one.
Therefore we have established the quantity’s viability to act as a state variable.  In fact,
this is the basis of the entropy of thermodynamics,

dS / 
dQ
T 

. (A.26)
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Appendix B

Entropy:  Abstract Axioms and Intuitive Development
Shannon's motivation for the quantity he refers to as entropy is to measure the

average information contained in a message (that is, a particular arrangement of
symbols, such as the text on this page) about which only statistical characteristics are
known to the receiver.  To quote him directly on this topic, "Can we find a measure of
how much ‘choice’ is involved in the selection of the event or of how uncertain we are
of the outcome?"5 where the event he refers to is the recognition of a particular
message.  He developed this measure by imposing basic properties to which such a
measure should adhere, and from this established the unique expression that solely
satisfies these requirements.  Briefly the requirements are:

1. The entropy, H, should be continuous over the probabilities of occurrence of the
message’s constituent symbols.  The important implication of this requirement
is that small changes in the statistics of the message (that is, the probabilities
of occurrence of the symbols) should result in only small changes in the
entropy of the message.

2. The entropy should be monotonically increasing with an increasing number of
outcomes.  This means that the uncertainty, which is what entropy measures,
should be greater for a greater variability in the possible outcome.

3. The entropy should be additive in such a way that a single choice with multiple
outcomes should yield the same result as a succession of choices leading to
the same final outcomes.  In other words, the total entropy should be the
weighted sum of the entropies associated with all of the choices that lead to
the final set of outcomes, a scheme which gives the same result regardless of
how the choices are grouped.

Shannon provides an elegant proof built from these conditions that firmly
establishes entropy be given as

H = − K 3 
i 

p 
i 
log p 

i 

. (B.1)

An alternate approach, catering more closely to intuition, may be developed by
straightforward application of information theory.  To do this, consider the following
two examples of messages assembled from collections of symbols.

First, for a message comprised of n distinct symbols, the number of different
arrangements is
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W = n ! . (B.2)

The mathematical expression assigned to information is

I = K log W (B.3)

with equal probability of occurrence of any of the W possible messages.  The
information content of a particular message composed of these symbols follows as

H = I (B.4)

H = K log W . (B.5)

Next, for a message composed of n symbols of m different types, where m is
less than n, the number of distinct possible arrangements is

W = 
n ! 

m 

J 
i = 1 

n 
i 
! 

. (B.6)

The denominator accounts for the fact that arrangements differing only among the
positions of indistinguishable symbols of the same kind result in no difference in the
outcome, so these arrangements are not recounted.  Again with equal probability for
the occurrence of any outcome, the information content in this case is

H = I (B.7)

H = K log
n ! 

m 

J 
i = 1 

n 
i 
! 

(B.8)

H = K log n ! − log
m 

J 
i = 1 

n 
i 
! 

H = K log n ! − 
m 

3 
i = 1 

log n 
i 
! (B.9)

Substitution for the factorial may be achieved with the use of Stirling’s formula
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n ! . n n e − n 2 π n . n n e − n (B.10)

where n is assumed to be large.  This into the natural logarithm gives

ln n ! . ln n n e − n 

ln n ! . ln n n + ln e − n 

ln n ! . n ln n − n 

ln n ! . n ln n − 1 (B.11)

and this into the expression for entropy, replacing both factorials, gives

H = K e n ln n − 1 − 
m 

3 
i = 1 

n 
i 

ln n 
i 

− 1 , (B.12)

to a good approximation, where the change in base of the logarithm is compensated
by an adjustment of the constant coefficient from K to Ke.  Distributing the first term,
and rewriting n as the summation over all ni’s yields

H = K e n ln n − 
m 

3 
i = 1 

n 
i 
− 

m 

3 
i = 1 

n 
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ln n 
i 

− 1 (B.13)

Similarly distributing the ni’s within the following term’s summation gives

H = K e n ln n − 
m 
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i = 1 

n 
i 
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i 
 ln n 

i 
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(B.14)

or more simply

H = K e n ln n − 
m 

3 
i = 1 

n 
i 
 ln n 

i 
. (B.15)

The general logarithm base is now restored, along with the corresponding restoration
of the constant coefficient

H = K n log n − 
m 

3 
i = 1 

n 
i 
 log n 

i 
. (B.16)
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Again rewriting n as the summation over all ni’s, we obtain

H = K 
m 

3 
i = 1 

n 
i 

log n − 
m 

3 
i = 1 

n 
i 
 log n 

i 
(B.17)

and distributing within that summation

H = K 
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or
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log n − log n 
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. (B.18)

Combining the two logarithms produces the more concise expression

H = K 
m 

3 
i = 1 

n 
i 
log

n 
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i 

, (B.19)

and making use of another property of logarithms, this is rewritten as

H = − K 
m 

3 
i = 1 

n 
i 
log

n 
i 

n 
. (B.20)

Introducing a one in the form n/n and distributing the denominator gives

H = − n K 
m 

3 
i = 1 

n 
i 

n 
log

n 
i 

n 
(B.21)

and recognizing the ratios as probabilities, the appropriate substitution bears

H = − n K 
m 

3 
i = 1 

p 
i 
 log p 

i 
. (B.22)

For the entropy of one symbol (n = 1), this becomes
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H = − K 
m 

3 
i = 1 

p 
i 
 log p 

i 
,

in agreement with eqn. 6.8, given for this purpose:  to express the entropy of a single
symbol.
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